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Abstract

Thecentralissueaddressedby this work is theability to automatically
designrobotswith complex morphologiesanda tightly adaptedcontrolsys-
temat low cost. Inspiredby nature,automaticdesignis achieved by using
anartificial co-evolutionaryprocessto discover thebodyandbrainof arti-
ficial life formssimultaneouslythroughinteractionwith asimulatedreality.
Throughtheuseof rapidmanufacturing,theseevolveddesignscanbetrans-
ferredfrom virtual to truereality. Theartificial evolutionprocessembedded
in realisticphysicalsimulationcancreatesimpledesigns,often recogniz-
ablefrom thehistoryof biology or engineering.This paperprovidesa brief
review of threegenerationsof theserobots, from automaticallydesigned
LEGO structures,throughthe"GOLEM" projectof electromechanicalsys-
tems,to new modulardesignswhich make useof a generative, DNA-lik e,
representation.
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1 Introduction

Traditionally, robotsare designedon a hardware first, software last basis: me-

chanicalandelectricalengineersdesigncomplex articulatedbodieswith state-of-

the-artsensors,actuatorsandmultipledegreesof freedom;thenext taskis simply

to “write thesoftware”. But peoplehave drasticallyunderestimatedthedifficulty

in writing controlsoftwareandthis, in additionto thehighcostsof designingand

building thehardware,hasled theirdevelopmentto astasis[1]. Moderncommer-

cial robotsperformonly simpleandhighly repetitive manufacturingtaskswith

very little decision,if any, by the on-boardsoftware [2]. The centralissuead-

dressedby our work is theability to designrobotsof morecomplex structureand

moreon-boardintelligenceat a lower cost. We suggestthat this canbeachieved

only whenrobotdesignandconstructionarefully automatic.

In nature,thesoftwarewe aretalking aboutis theprocessof evolution. The

body and brain of a creatureare tightly coupled,the fruit of a long seriesof

small mutual adaptations– like the chicken and the egg, neitherone was de-

signedfirst. Thereis never a situationin which the hardwarehasno software,

or wherea growth or mutation,beyondtheadaptiveability of thebrain,survives.

Autonomousrobots, like living creatures,requirea highly sophisticatedcorre-

spondencebetweenbrain,bodyandenvironment.Usingnaturalsystemsasinspi-

ration,weuseevolutionaryalgorithmsandLindenmayersystems(L-systems)[3]

to co-evolve boththebrainandthebody, simultaneouslyandcontinuously, from

a simplecontrollablemechanismto oneof sufficient complexity for a particular
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specializedtask; and,createa representationschemethat allows for the hierar-

chical constructionof morecomplex componentsfrom previously definedones

for theevolution of modulardesigns.Althoughwe werenot thefirst to propose

brain/bodycoevolution [4–6], we arethefirst to have gonefrom computersimu-

lation to reality.

Theresultsof ourwork arepredictiveof afuturein whichhumansareengaged

in more complex and artistic forms of creativity, while the lower level details

of designand interactionsbetweencomponentsaremanagedby computers.In

this paper, we begin to seethat computersoftware,properlysituated,cancreate

functional forms, and further, that thereare representationaltechniqueswhich

enablethesesystemsto begin to scaleto morecomplex forms in which evolved

componentsare replicatedand reusedin hierarchicalpatterns[7, 8]. We have

beenworking for sometime on refining our understandingof the dynamicsof

coevolutionarylearning,which, if successful,couldleadto moreproductiveself-

organizationof complex andartificially engineeredsystems[9,10]. Evenso,there

remainsartistic choicesin the constructionmedia,the designof fitnesscriteria,

andtheselectionof evolveddesignsto betranslatedinto therealworld.

2 Evolution algorithms

Evolutionaryalgorithms(EAs),a techniqueinspiredby biologicalevolution [11],

have beenusedto generatecomputerimages[12], shapesandobjects[13,14],

creaturecontrollers[15–17]andcreaturemorphologies[18]. An evolutionaryal-
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gorithm works by keepinga populationof candidatesolutions,andrefining the

populationwith respectto a given"fitnessfunction,"which canprovide anabso-

lute measurementof thequality of any candidate.Throughsuccessive iterations,

the EA replacespoor quality membersof the populationwith individuals gen-

eratedby applyingvariation to higherquality membersof the population. The

fitnessfunctionis anautomaticway for theresearcheror designerto specifytheir

goals.

Oneform of evolutionaryalgorithmsis coevolution, in which a populationis

not rankedby anabsolutefitnessfunction,but usinga relative measuresuchasa

comparisonbetweendifferentcandidates.Coevolution,whensuccessful,dynam-

ically createsa seriesof learningenvironmentseachslightly morecomplex than

the last,anda seriesof learnerswhich aretunedto adaptin thoseenvironments.

Sims’ work [19] on body-braincoevolution,andthemorerecentFramstickssim-

ulator [20], demonstratedthat the neuralcontrollersandsimulatedbodiescould

becoevolved. Thegoalof our researchin coevolutionaryroboticsis to replicate

andextendresultsfrom virtual simulationslike theseto the reality of computer

designedandconstructedspecial-purposemachinesthat canadaptto real envi-

ronments.

We are working on coevolutionary algorithmsto develop control programs

operatingrealisticphysicaldevice simulators,bothcommercial-off-the-shelfand

our own customsimulators,wherewe finish the evolution insidereal embodied

robots. We are ultimately interestedin obtainingelectro-mechanicalstructures

that have complex morphologyandplacemore degreesof freedomundercon-
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trol thananything that hasever beenmanuallydesigned.We alsoexpect these

machineswill have low enoughengineeringcosts,becausethey employ minimal

humandesignlabor, to beproducedin smallquantity.

It is not feasiblethatcontrollersfor completestructurescouldbeevolved(in

simulationor otherwise)without first evolving controllersfor simplerconstruc-

tions.Comparedto thetraditionalform of evolutionaryrobotics[21–25],in which

controllersareseriallydownloadedinto a givenpieceof hardware,it is relatively

easyto explore thespaceof body constructionsin simulation. Realisticsimula-

tion is alsocrucial for providing a rich andnonlinearuniverse.However, while

simulationcreatestheability to explorethespaceof constructionsfar fasterthan

real-world building andevaluationcould, thereremainsthe problemof transfer

to realconstructionsandscalingto thehigh complexities usedfor real-world de-

signs.

3 Results

The fundamentalmethodof our work is evolution insidesimulation,but in sim-

ulationsmoreandmore realisticso that the resultingblueprintsare not simply

visually believable,asin Sims’ work, but alsobuildable,eithermanuallyor auto-

matically. Our first resultsinvolvedautomaticallycreatingstructureswith a large

numberof partsthatcouldbetransferredfrom simulationto therealworld. In the

secondgenerationweevolvedautomaticallybuildabledynamicmachinesthatare

nearlyautonomousin boththeir designandmanufacture,usingrapidprototyping

5



technology. Thethird generationbeginsto addressscaling,by handlingcomplex

structuresthroughmodularity. Evenwith thesethreedemonstrations,we feel the

work is at a very early stage,with major issuesonly beginning to be addressed,

suchastheintegrationof sensorsandautomatingthefeedbackfrom “li ve” inter-

actions.

3.1 Generation 1: Legobots

Ourfirst steptowardsfully evolvedcreatureswasevolvingstatic,LEGOstructures

in simulationthat could thenbe built in reality. A simulatorfor evolving such

structuresneedsto satisfythefollowing constraints:

� Representation—- it shouldcoverauniversalspaceof mechanisms.

� Conservative — becausesimulationis never perfect,it shouldpreserve a

margin of safety.

� Efficient— it shouldbequicker to testin simulationthanthroughphysical

productionandtest.

� Buildable— resultsshouldbeconvertiblefrom asimulationto arealobject.

Thesimulatorwe constructedconsiderstheunionbetweentwo bricks asa rigid

joint betweenthe centersof massof eachone, locatedat the centerof the ac-

tual areaof contactbetweenthem. This joint hasa measurabletorquecapacity:

morethana certainamountof force appliedat a certaindistancefrom the joint

will breakthetwo bricksapart.Thefundamentalassumptionof our modelis the
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idealizationof the union of two LEGO bricks asa rotationaljoint with limited

capacity.

Using this simulator, in conjunctionwith a simple evolutionary algorithm,

we evolved complex LEGO structures,which were then manuallyconstructed

[26–28]. Our systemreliably builds structuresthatmeetfitnessgoals,exploiting

physicalpropertiesimplicit in the simulation. Building the resultsof the evo-

lutionary simulation(by hand)demonstratedthe power andpossibility of fully

automateddesign:the long bridgeof figure1 shows thatour simplesystemdis-

coveredthe cantilever, while the weight-carryingcraneshows it discoveredthe

basictriangularsupport.

3.2 Generation 2: Genetically Organized Lifelike Electrome-

chanics (GOLEM)

TheLEGO machines,with computergeneratedblueprintsandmanualconstruc-

tion, demonstratedthat the interactionbetweensimulatedphysicsandevolution

leadsto a primitive form of discovery which canbe transferredinto reality. The

next goalwasto addmotionto ourdesigns,andaddresstheissueof manufacture.

While LEGO kits have motion components,the designspaceis very broadand

difficult to model,andno robotcanmatchthemanualdexterity of a 10 yearold

humanin assembly. To achieve actuated,automaticallymanufacturedrobots,we

startedwith a wholenew processin which robotmorphologywasconstrainedto
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bebuildableby acommercialoff theshelfrapidprototypingmachine1 allowing us

to evolvebodiesandcontrollersin simulationthatwereessentiallyableto transfer

automaticallyinto reality [29].

Theserobotsarecomprisedof fixedbars,ball-jointsandlinearactuatorscon-

trolled by sigmoidalneurons. The configurationof the bodiesare constrained

to be buildableout of thermoplasticusingour rapid prototypingmachine. The

entireconfigurationis evolved for a particulartaskandselectedindividualsare

printedpre-assembled(exceptmotors),later to be recycled into differentforms.

In doing so, we establishfor the first time a completephysicalevolution cycle.

In this project, the evolutionarydesignapproachassumestwo main principles:

(a) to minimize inductive bias, we must strive to usethe lowest level building

blockspossible,and(b) we coevolve the body andthe control, so that that they

stimulateandconstraineachother. We usearbitrarynetworksof linearactuators

andbarsfor themorphology, andarbitrarynetworksof sigmoidalneuronsfor the

control.Evolution is simulatedstartingwith asoupof disconnectedelementsand

continuesover hundredsof generationsof hundredsof machines,until creatures

that are sufficiently proficientat the given task emerge. The simulatorusedin

this researchis basedon quasi-staticmotion.Thebasicprincipleis thatmotionis

brokendown into aseriesof statically-stableframessolvedindependently. While

quasi-staticmotioncannotdescribehigh-momentumbehavior suchasjumping,it

canaccuratelyandrapidly simulatelow-momentummotion. This kind of motion
1We usea Stratasysmachinewhich "prints" layer after of layer of plastic in responseto a

computergenerated3D model.Thelargestbuildablepiecefits insidean8 by 8 by 12inchvolume.
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is sufficiently rich for the purposeof the experimentand, moreover, it is sim-

ple to inducein reality sinceall real-timecontrol issuesareeliminated. Several

evolution runswerecarriedout for the taskof locomotion.Fitnesswasawarded

to machinesaccordingto theabsoluteaveragedistancetraveledover a specified

periodof neuralactivation. Theevolvedrobotsexhibitedvariousmethodsof lo-

comotion,includingcrawling, ratchetingandsomeformsof pedalism(figure2).

Theseforms andmechanismsoften appearto be "designed"andto take advan-

tageof our engineeringvocabulary; however, they emergefrom theinteractionof

evolutionandthesimulationof thepotentialroboticbodiesandtheirbrains.

Selectedrobotsarethenreplicatedinto reality: their bodiesarefirst fleshed

to accommodatemotorsandjoints,andthencopiedinto materialusingrapidpro-

totypingtechnology. A temperature-controlledprint headextrudesthermoplastic

materiallayer by layer, so that the arbitrarily evolvedmorphologyemergespre-

assembledasa solid three-dimensionalstructurewithout tooling or humaninter-

vention. Motorsarethensnappedin (manually),andtheevolvedneuralnetwork

is activated(figure 3). The robotsthen perform in reality muchas they did in

simulation.

3.3 Generation 3: Generative Representations

While theGOLEM projectvalidatedourapproachto automaticdesignandmanu-

facture,themachineswhichwereproducedareobviously fairly simplecompared

to thekindsof robotsbuildableby teamsof humanengineers.In factmostwork in

automaticdesignof engineeringproducts,usingtechniquesinspiredby biological
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evolution [30–32], suffersthesamecriticism.

Our third generationstartsto addressthe issueof whetherevolutionaryauto-

matic designtechniquescanattain the higher level of complexity necessaryfor

practicalengineeringprojects. Ideally an automateddesignsystemwould start

with a library of basicpartsandwould iteratively createnew, morecomplex com-

ponents,from onesalreadyin the library. Oncea componentis specified,the

systemwould beableto usethecomponentthroughoutthedesign,aswell asfor

creatingevenmorecomplex components,in the sameway asthe initial starting

setof basicparts. To achieve this, we have developeda kind of generative rep-

resentation, which allows for the reuseof elementsin a design. A generative

representationinvolvesanencodingof candidatedesignsnot in adirectandprim-

itive form, but more abstractly, using somethinglike a computerprogramor a

grammar[33,34].

Again we found inspirationin naturalsystemsandchoseLindenmayersys-

tems(L-systems)asthe basisfor the generative representationin which we en-

codedesigns.L-systemsarea grammaticalrewriting systemintroducedby Lin-

denmayerin 1968[35] to modelthebiologicaldevelopmentof multicellularor-

ganisms.An L-systemconsistsof asetof rulesfor rewriting charactersin strings,

with rulesappliedin parallel to all charactersin the string just ascell divisions

happenin parallelin multicellular organisms.Complex stringsarecreatedfrom

simplerstringsby iteratively rewriting symbolsin thestring with othersymbols

10



accordingto therewriting rules.Rulesareof theform:

rule head condition successor

a
�
n� :

�
n � 2� � a

�
n � 2� b

�
n�

a
�
n� :

�
n � 0� � c a

�
n � 1�

b
�
n� :

�
n � 2� � d a

�
n � 1�

b
�
n� :

�
n � 0� � c d b

�
n � 1�

Rewriting consistsof matchingsymbolsin thestringbeingprocessedwith a cor-

respondingrule for whichboththeruleheadmatchesthesymbolin thestringand

theconditionpartof theruleis satisfied.Symbolswhichdonotsatisfyany rewrite

rulearenotreplacedandarecopieddirectly to thenext string.Startingfrom apre-

determinedsymbol,productionrulesfrom the L-systemareusedeitheruntil no

moreapplyor for a fixednumberof rewriting iterations.For example,usingthe

abovesetof rulesandstartingwith aninitial stringconsistingof thesinglesymbol

a
�
4� , thefollowing sequenceof stringsareproduced:

a
�
4�

a
�
2� b

�
4�

ca
�
1� da

�
3�

ca
�
0� da

�
1� b �

3�
ca

�
0� dca

�
0� da

�
2�

ca
�
0� dca

�
0� dcca

�
0�
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Thefinal stringof charactersis interpretedasanassemblyprocedurefor construct-

ing anobject,with eachsymbolrepresentinga differentconstructioncommand.

Thusagenerativeencodingis analogousto acomputerlanguage,with production

rulesa typeof sub-procedurefor specifyingcomplex components.Theendresult

is anevolutionaryalgorithmoptimizingapopulationof L-systems,eachof which

is nota blueprintfor adesign,but analgorithmfor creatingtheblueprint.

A graphicalexampleof anevolvedL-systemis shown in figure4.a,alongwith

thesequenceof stringsit generatesin figure4.b. In oursystemwedistinguishbe-

tweensymbolsthat canbe rewritten (representedby cubes)andsymbolswhich

arelaterusedfor constructingtheobject(representedby spheres).In figure4.a,a

rule is graphicallyrepresentedby acubeconnectedto anumberof blackspheres,

eachof which is followedby asequenceof symbols.Thecolumnof cubeson the

left representruleheads,andtheblackspheresto whichthey areconnectedrepre-

sentdifferentconditions.Thesequenceof symbolsfollowing eachof theseblack

spheresarethesuccessorsymbols.In additionto cubesandspheres,trianglesare

usedto representa repeatoperator, which indicatesthat thesymbolsfollowing it

areto berepeatedagivennumberof times.ThisL-systemis startedwith thefirst

productionrule,andthesequenceof stringsshown in figure4.barethestringsof

symbolsgeneratedaftereachiterationof parallelreplacement.Thefinal stringof

symbolsis usedto constructthedesign.

Usingthissystemfor evolving L-systems,differentdesigntypescanbegener-

atedby replacingonesetof constructioncommandswith another. Sofarwehave

evolved 3D staticstructures[36] (figure 5), andlocomotingmechanismscalled
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genobots[37–39]. In figure6 weshow two simulatedgenobots,thefirst of which

(a) rolls alongby twisting theconnectionsbetweeneachpair of rectangle-shaped

piecesandthesecond(b) movesby undulatinglikeasea-serpent.A third genobot,

shown in bothsimulationandreality in figure7, movesby usingits four legs to

walk.

4 Discussion and Conclusion

Can evolutionary and coevolutionary techniquesbe usedin the designof real

robotsas“artificial lifeforms?” In this paperwe havepresentedthreegenerations

of ourwork, eachof whichaddressesoneor moredimensionsof theproblem.We

haveoverviewedresearchin useof simulationsfor handlinghighpart-countstatic

structuresthat arebuildable,dynamicelectromechanicalsystemswith complex

morphologythatcanbebuilt automatically, andgenerativeencodingsasa means

for scalingto complex structures.

The limitations of the work areclearly apparent:thesemachinesdo not yet

have sensors,andarenot really interactingwith their environments. Feedback

from how robotsperformin therealworld is not automaticallyfed-backinto the

simulations,but requireshumansto refinethesimulationsandconstraintson the

designsystem.Finally, thereis thequestionof how complex a simulatedsystem

canbebeforetheerrorsgeneratedby transferto reality areoverwhelming.

Wecannotclaim immediatesolutionto theseproblems.Thereis work in evo-

lutionary robotics(e.g. by Jakobi [40]) which integratessensorsinto the evo-
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lutionary mix andwe have alreadydemonstratedfixed-morphologyrobotswith

sensorslearningin simulation[41] andthroughinteractionsin the real environ-

ment [42]. In our next generationsof evolved creatureswe expect to seesome

sensorintegrationinto our systemallowing us to coevolve the morphologyand

controllersof reactive robots.

As for complexity overwhelmingtheprocess,it is not yet a problembecause

thecomplexity of whatcanbeevolvedis still low. It is aprimaryresearchtopicfor

us,andwehavebeenstudyinghow coevolutioncanleadto complex performance

in domainslike game-playing[43], and the designof complex algorithmslike

sortingnetworks[44] andcellularautomata[45].

Theissueof whetherornotthiskind of artificial life workwill everbepractical

and scalableis bestrelatedto the history of computerchess. The theory that

machinescould play a gamelike chesscamein the 1920’s. This wasfollowed

by the first chessplaying computerin the mid 1950’s, which playedby making

randomlegal moves. While proponentsof funding for the new field of AI were

over-optimistic,by theendof thecenturyDeepBluewasableto win atournament

againsttheleadinghumanplayer, usingalmostunlimitedCPUtime and80 year-

old theory[46].

Perhapsthe small demonstrationsof automaticdesignwill lead– with con-

tinued development,and increasesin computerspeedand simulation fidelity,

coupledto increasesin basictheory of coevolutionary dynamicsand represen-

tation schemes– over time, to the point wherefully automaticdesignis taken

for granted,muchascomputeraideddesignis takenfor grantedin manufacturing
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industriestoday.

Our currentresearchmovestowardsthe overall goal via multiple interacting

pathsof simulation,theory, building andtestingin the real world, andapplica-

tions. It is a broad,multidisciplinarylong-termendeavor, wherewhatwe learnin

onepathaidstheothers.We believe that sucha broadendeavor is theonly way

to ultimately constructcomplex autonomousmachineswhich caneconomically

justify their own existence.
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Figure1: Photographsof theFAD LEGO Bridge(Cantilever) andCrane(Trian-
gle). Photographscopyright PabloFunes& JordanPollack,usedby permission.
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(a) (b) (c)

(d) (e) (f)

Figure2: (a) A tetrahedralmechanismthat produceshinge-like motion andad-
vancesby pushingthe centralbar againstthe floor. (b) Bipedalism:the left and
right limbsareadvancedin alternatingthrusts.(c) Movesits two articulatedcom-
ponentsto producecrab-like sidewaysmotion. (d) While the uppertwo limbs
push,the centralbody is retracted,andvice versa. (e) This simplemechanism
usesthe top bar to delicatelyshift balancefrom sideto side,shifting thefriction
point to eithersideasit createsoscillatorymotionandadvances.(f) This mech-
anismhasanelevatedbody, from which it pushesanactuatordown directly onto
thefloor to createratchetingmotion. It hasa few redundantbarsdraggedon the
floor. Imagescopyright HodLipson& JordanPollack,usedby permission.
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(a) (b) (c)

(d) (e) (f)

Figure3: (a)Fleshedjoints,(b) replicationprogress,(c) pre-assembledrobot(fig-
ure2f), (d,e,f)final robotswith assembledmotors.Imagescopyright Hod Lipson
& JordanPollack,usedby permission.
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(a)

(b)

Figure4: Exampleof anevolvedL-system(a) alongwith thesequenceof strings
that it generates(b). Imagescopyright Gregory Hornby& JordanPollack,used
by permission.
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(a) (b)

Figure5: Two tablesevolvedusingagenerativerepresentation.Imagescopyright
GregoryHornby& JordanPollack,usedby permission.
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(a) (b)

Figure6: Two examplesof evolvedgenobots.Imagescopyright Gregory Hornby
& JordanPollack,usedby permission.
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(a) (b)

Figure7: A 4-legged,evolved genobotshown in simulation(a) andreality (b).
Imagescopyright Gregory Hornby& JordanPollack,usedby permission.
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